

Introduction to Vacuum Wastewater Collection and Plumbing Systems

Mike Stach

Tel: 630-639-9898

Email: Michael.stach@evac.com

Content

1 How it works

- Defining vacuum plumbing
- Vacuum system drainage overview

2 Benefits

- General benefits of vacuum plumbing
- Benefits for specific building types

3 When and where to consider

- Identify general applications
- Solutions for various building types

4 Conclusion

- Cost considerations and payback
- Wrap-up

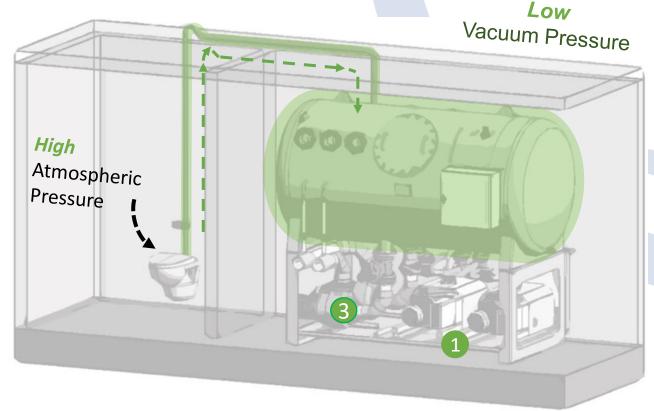
Introduction to Vacuum Plumbing

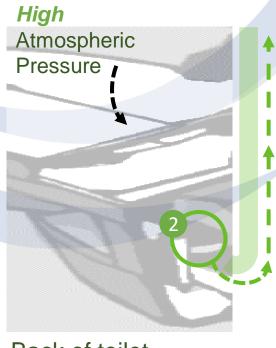
What is it?

- Sometimes conventional gravity plumbing doesn't meet design goals, or just won't work
 - Vacuum plumbing is a simple concept
 - Often overlooked
 - Mostly thought of as relating to airplanes and cruise ships
 - Vacuum technology is becoming more well known for the land-based projects
 - Offers solutions and benefits to the building sector that conventional gravity plumbing cannot, such as hygiene & water savings

How it works

Defining vacuum plumbing Vacuum Collection System Overview


Defining Vacuum Plumbing



Collect and Dispose

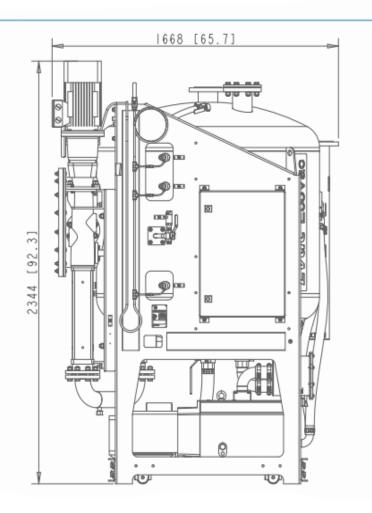
- 1 Vacuum Generation
 Vacuum pumps create
 pressure differential
- 2 Vacuum Interface Valve
 Closed discharge valve
 separates high from low
 pressure
- 3 Discharge Pumps
 Increased flow, improves sediment drainage

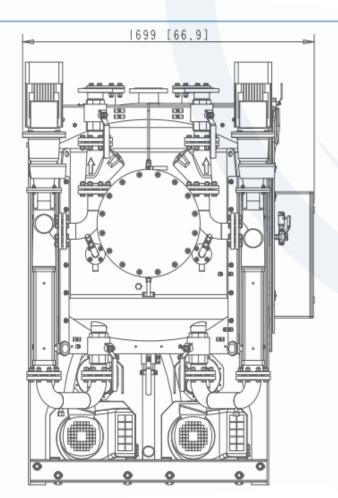
Negative Flow System

System Design and Sizing Considerations

Different Options Depending on Project Requirements

- No tank vs one tank vs multiple
- Volume of tank
- Multiple vacuum pumps and varying Horsepower
- Gravity drainage vs forced drainage
- Control panels and level sensors
- Piping network





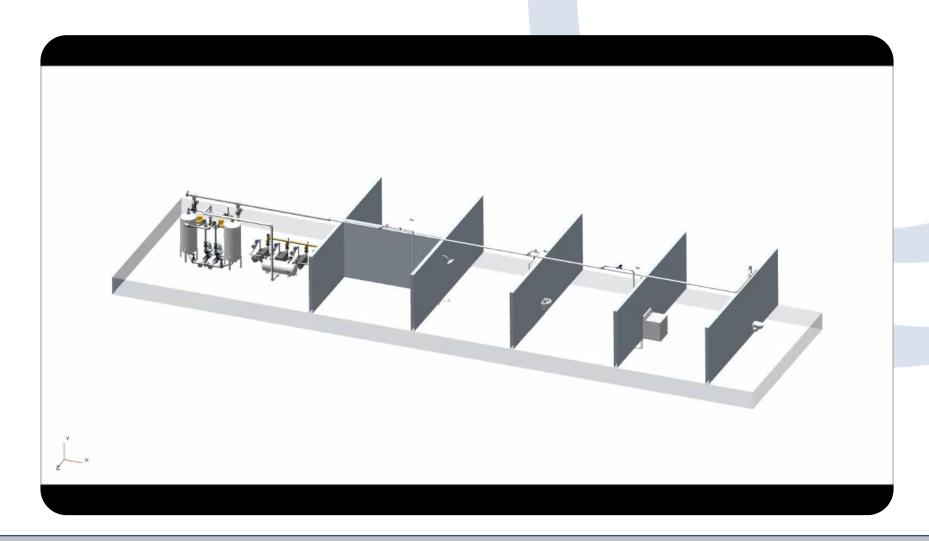
Footprint for palletized system = ~5.5'x5.5'

Vacuum System Drainage Overview

2 Vacuum Urinal

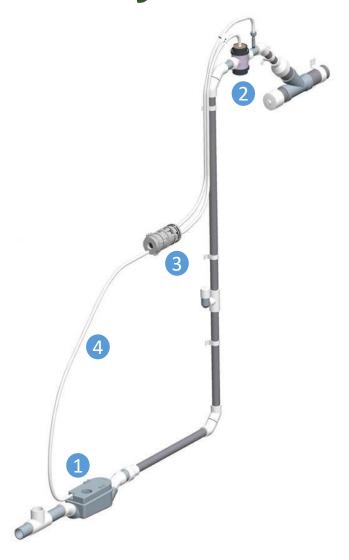
3 Vacuum Shower Drain

Vacuum System Drainage Overview



Piping Network

- 1 Vertical Riser
- 2 Horizontal Header
- 3 Water Slug Reform Pocket
- To Main



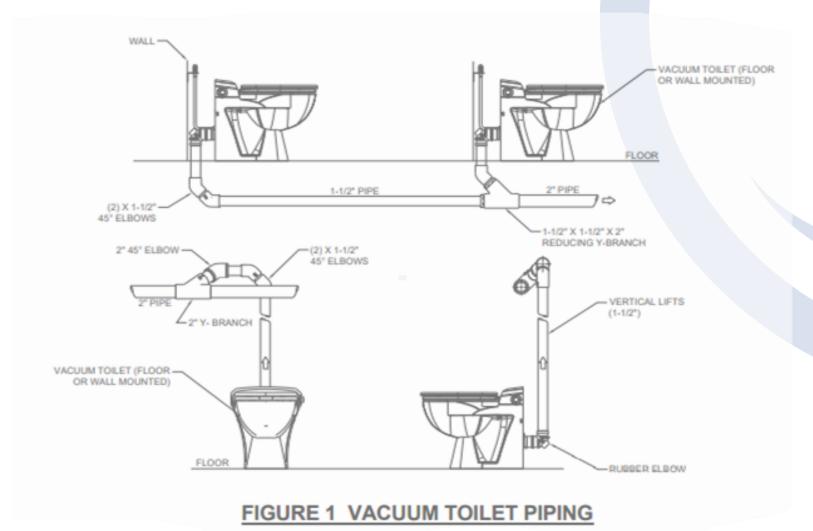
Vacuum System Drainage Overview

Collection Fixtures & Devices

- 1 Buffer Assembly
- 2 Vacuum Interface Valve
- 3 Control Device Activator
- 4 Sensor Tube

Toilet and Urinal Operation

- Pneumatic Push Button
- Signal sent to Control Mechanism
- Discharge Valve and Water Valve open
 - Water Valve
 - Opens and rinse water cleans bowl with no misting
 - Discharge Valve
 - Normally closed
 - Opens and air at atmospheric pressure pushes waste into vacuum piping network
 - Eliminates cross contamination


Toilet and Urinal Operation

- Pneumatic Push Button
- Signal sent to Control Mechanism
- Discharge Valve and Water Valve open
 - Water Valve
 - Opens and rinse water cleans bowl with no misting
 - Discharge Valve
 - Normally closed
 - Opens and air at atmospheric pressure pushes waste into vacuum piping network
 - Eliminates cross contamination

Vacuum Toilet Piping Options

Vacuum Toilet Piping Options

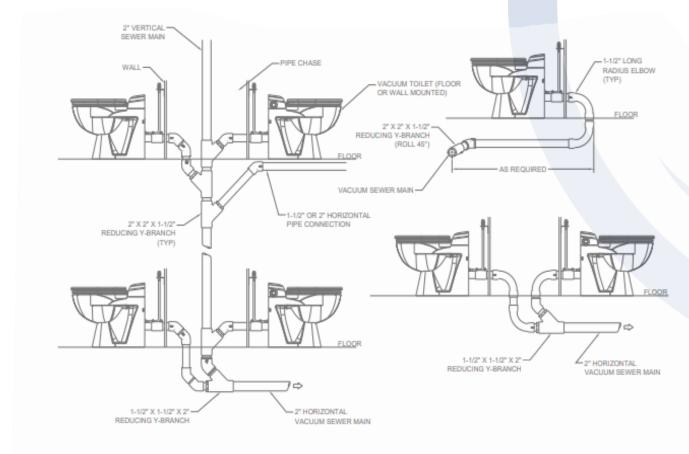
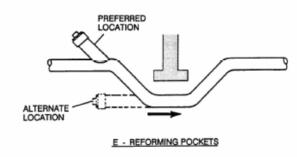
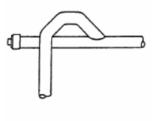



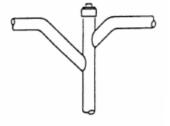
FIGURE 2 VACUUM TOILET PIPING

Cleanouts

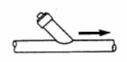
Possible Cleanout Locations

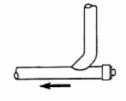

End of horizontal main lines

Top of vertical trunks


At horizontal intervals of 50 ft+

At 90-deg turns


At reform pockets due to obstructions


A - END OF HORIZONTAL MAINS

B - TOP OF VERTICAL TRUNKS

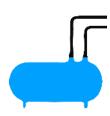
C - INTERVALS OF 50 FT.

D - 90 DEGREE BEND

System Design and Sizing Considerations

Black Water, Gray Water, and Condensate Collection

Vacuum generation type (supermarkets vs. other building installations)
Piping design criteria and restrictions (lift heights and piping diameter)



Flow Rates of Individual Fixtures (Air, Water, and Solids)

Toilets, urinals, showers, sinks, washing machines, freezer cases Tank(s), vacuum pumps, discharge pumps (if needed)

System Design and Sizing Considerations

Quantity and Diversity Requirements of Fixtures

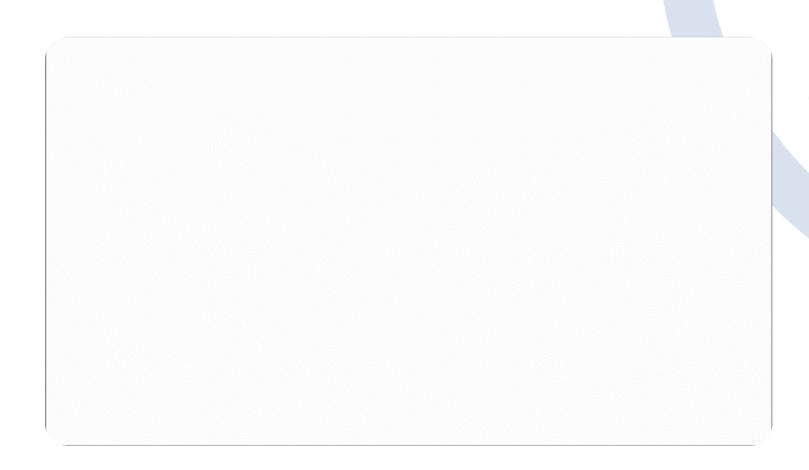
Differences between correctional and other buildings


Redundancy Requirement

Best practices, customer requirements

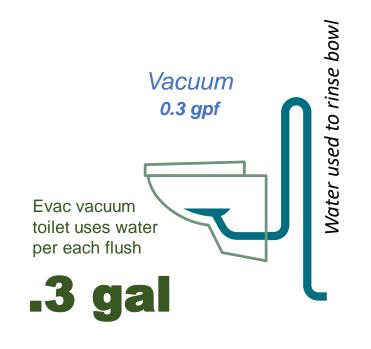
Project planning and design

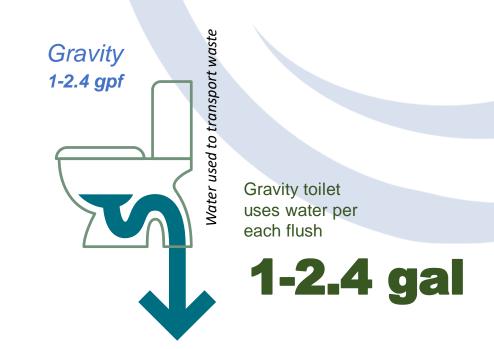
Quantity and Diversity of Requirements for Fixtures


- ➤ Is the building for public use?
- Should hygiene be a factor?
- Is water savings important?
- Number of toilets/Urinals The higher the qty/usage of fixtures, the greater chance for bacteria transmission
- Medical clinics such as Dialisys or anywhere bio waste is introduced to the system
- Is the project remote? Tanks would need to be pumped rather than dumped
 If Bio waste specialty pumping/disposal companies
- ➤ Placement of vacuum fixtures is flexible due to the piping network flexibilty and can be done with hygiene/bacteria as part of the process

Installation Specific Characteristics

- Building Type?
- Sewage grinders, Discharge Pumps & System Controls

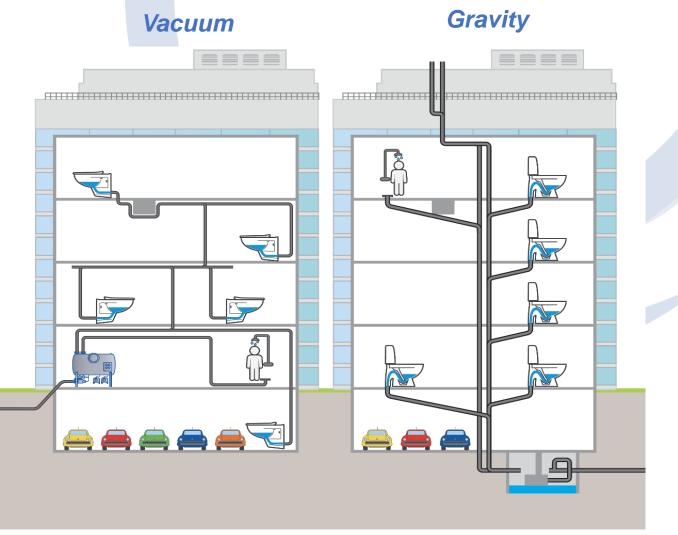

General and Healthcare Benefits


Up to 90 % Water Savings – Get Help With LEED, BREEAM, or Other Green Building Certifications

Water consumption

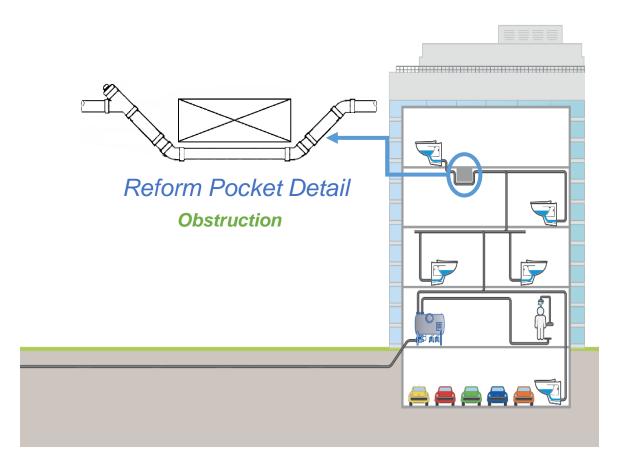
vacuum vs. gravity toilet

A Comparison to Gravity Plumbing for New and Renovation/Historic Buildings



- Significant time reductions to design and install vacuum
- Construction sequencing flexibility
- Re-use of existing buildings
- No need to penetrate slab
 - piping can sit on top
- Ease of remodeling
 - Cost savings in labor and time to saw-cut slab, trench, locate existing piping network & vent stacks

Benefits Related to Piping Network



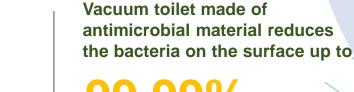
- Run vertical lifts
- No vent stacks
 - Closed loop system
 - No roof penetrations required
- Smaller diameter piping
 - > 1 ½" to 2" vs 3" to 4"
 - More cost-effective materials
 - Simplifies installation
- All but eliminates main line blockages
 - Easier to fix on exposed piping
 - Cleanouts
 - ➤ Velocity 23' to 26'/sec.
 - Smallest pinch point at fixture

Benefits Related to Piping Network

- Route around obstacles with reform pockets
 - Potential obstacles:
 - Mechanicals
 - Architectural and structural features
- Great for second use buildings and/or historic preservation sites
- Decreased slope requirement
 - > 1/16th" per foot
 - No need for continuous slope
 - Slope make-up with reform pockets
 - Limits dead space

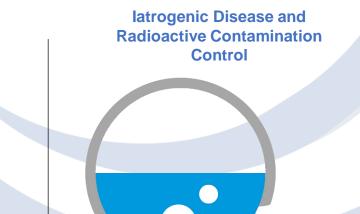
- Great design flexibility due to:
 - Vertical lifts
 - Horizontal runs
 - No longer have the conventional vent stack dictating where fixtures go
 - Decreased slope requirement
 - Reform Pockets
 - Smaller diameter piping

Benefits For Healthcare, Hygiene, and Comfort


A 1,000-bed facility can save 8 million gallons of water per year

Vacuum

0.3 gpf


Evac vacuum toilet uses water per each flush

.3 gal

99.99%

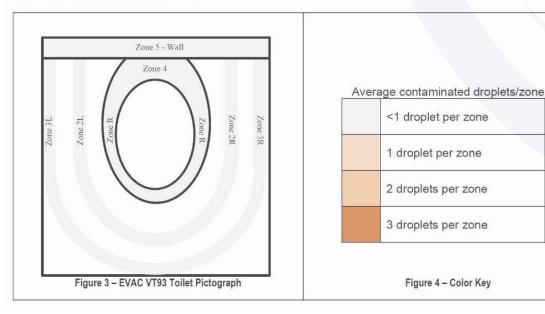
60-70L of odors, mists, and bacteria

Pipe leak - **Air leaks in** *vs* water leaking out

Preventing The Spread of Viruses and Bacteria

Gravity

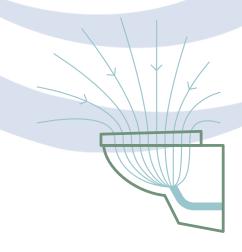
Overspray of up to


80,000

polluted droplets, stay suspended 1 meter in air for hours

NSF (National Sanitation Foundation) Microbiological Overspray Testing Results

<u>Contamination Pictograph</u> – (diagram not to scale)



Vacuum

Flush

60-70

of odors, mists, and bacteria

No Misting = A More Hygienic Solution

NSF International (National Sanitation Foundation) Report – March 2019 – nsf.org

- Vacuum toilet filled with E. Coli suspension
- Flushed w/ standard water supply
- Overspray measured with Petri dishes
- > 3 Trials
- 2h 30±5 post flush plates collected

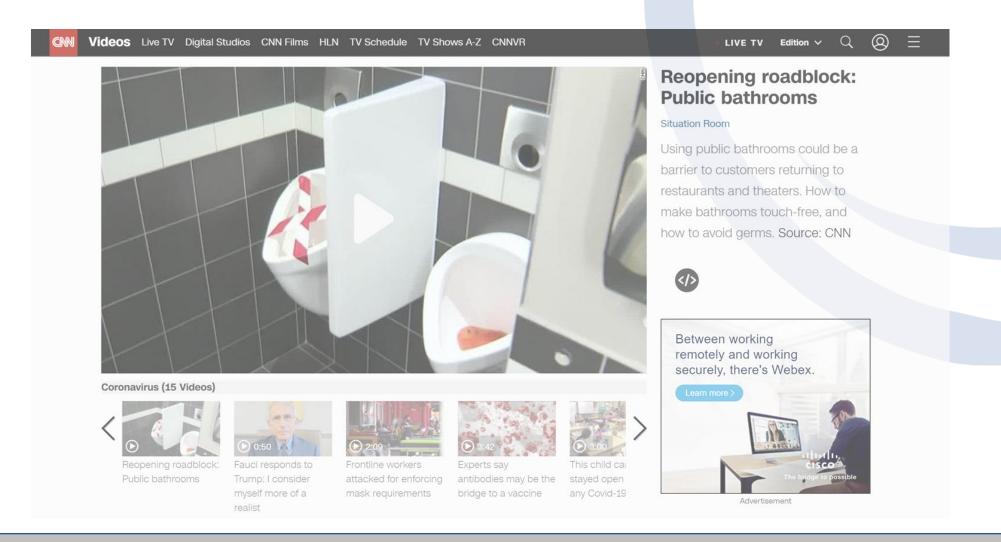
J-00303443		FLUSH #1 contaminated droplets/plate							
PLATE#		ZONE R	ZONE 2L	ZONE 2R	ZONE 3L	ZONE 3R	ZONE 4	ZONE WALL	
	1	<1	<1	<1	<1	<1	<1	<1	
	2	<1	<1	<1	<1	<1	<1	<1	
	3	<1	<1	<1	<1	<1	<1		
	4	<1	<1	<1	<1	<1	<1		
	5	<1	<1	<1	<1	<1			
	6	<1	<1	<1	<1	<1			
	7	<1	<1	<1	<1	<1			
	8	<1	<1	<1	<1	<1			
	9	<1			<1	<1			
	10	<1			<1	<1			
	11				<1	<1			
Total contaminated dr	roplets/zone	<1	<1	<1	<1	<1	<1	<1	

J-00303443	FLUSH #2 contaminated droplets/plate							
PLATE #	ZONE R	ZONE 2L	ZONE 2R	ZONE 3L	ZONE 3R	ZONE 4	ZONE WALL	
1	<1	<1	<1	<1	<1	<1	<1	
2	<1	<1	<1	<1	<1	<1	<1	
3	<1	<1	<1	<1	<1	<1		
4	<1	<1	<1	<1	<1	<1		
5	<1	<1	<1	<1	<1			
6	<1	<1	<1	<1	<1			
7	<1	<1	<1	<1	<1			
8	<1	<1	<1	<1	<1			
9	<1			<1	<1			
10	<1			<1	<1			
11				<1	<1			
Total contaminated droplets/zone	<1	<1	<1	<1	<1	<1	<1	

J-00303443	FLUSH #3 contaminated droplets/plate							
PLATE#	ZONE R	ZONE 2L	ZONE 2R	ZONE 3L	ZONE 3R	ZONE 4	ZONE WALL	
1	<1	<1	<1	<1	<1	<1	<1	
2	<1	<1	<1	<1	<1	<1	<1	
3	<1	<1	<1	<1	<1	<1		
4	<1	<1	<1	<1	<1	<1		
5	<1	<1	<1	<1	<1			
6	<1	<1	<1	<1	<1			
7	<1	<1	<1	<1	<1			
8	<1	<1	<1	<1	<1			
9	<1			<1	<1			
10	<1			<1	<1			
11				<1	<1			
Total contaminated droplets/zone	<1	<1	<1	<1	<1	<1	<1	

Designing for Crisis: Designing For the Future

The Changing Senior Living Design Landscape


Published on April 13, 2020

Unless one has the foresight of Jules Verne, it is impossible to predict the future. One thing is certain, however, when it comes to senior living design: tomorrow's design approaches will be significantly altered as a result of the COVID-19 pandemic. As designers, it is our duty to seriously consider how the built environment can be in the forefront of infectious disease control and prevention. While acute care environmental designers have long been

Reopening Roadblock: Public Restrooms

When and Where to Consider Vacuum

General applications
Solutions for various building types

Solutions For Various Building Types

Supermarkets, warehouses and shopping centers

Correctional facilities

Healthcare facilities and laboratories

Leisure and hospitality facilities

High traffic areas

Transportable facilities

Universities, offices and institutions

Solutions For Healthcare Buildings

Healthcare facilities and laboratories

Up to 90% Water Savings

- Large cost savings in facilities with multiple beds
- Less radioactive/bio waste
 - Fewer & smaller disposal tanks

Improve Hygiene and Comfort

Flush 60-70 liters of odors, mists, and bacteria

Iatrogenic Disease & Radioactive Contamination Control

Pipe leak – Air leaks in vs waste leaking out

National Healthcare Provider
Amherst, New York
Cancer Care Center
Russia

Hospital China

Why was vacuum chosen?

- Did not have enough pitch to meet sanitary drainage requirement
 - Vacuum eliminated need for pitch
 - Waste is force discharged into city sewer
- < Added benefits</p>

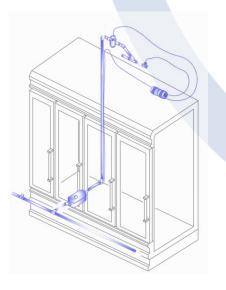
Solutions For Supermarket/Grocery/Cold Storage Buildings

Supermarkets, warehouses and shopping centers

Piping

- No trenching required
- Can run piping overhead

Flexibility


- Move refrigerator cases as desired
- No requirement for floor drains
- Vertical Lift up to 24' to main

CAPEX

Vacuum system can be capitalized

Renovation

Quick changeover for existing buildings


Reference

Some of the Largest Retailers
Worldwide

Why was vacuum chosen?

- Move refrigerator cases as desired
- > Eliminated need for floor drains
 - No need to penetrate slab
 - More sanitary
- Easier to access, maneuver, and simplify addition of single fixtures

Solutions For Correctional Buildings

Correctional facilities

Security

- No longer one main connecting multiple toilets
 - > Eliminates:
 - passing of contraband between cells
 - "Toilet Talk"- closed valve system
- Each cell/pod can be isolated from system to identify abusers

Maintenance

- No blocks due to velocity (23-26 feet/sec) and smallest pinch point at fixture
- Problems with piping can be easily located and rectified
- Access to system outside of cell

Water Savings

A 1,000-bed facility can save up to 8 million gallons of water per year

Reference

Correctional Facility
Cheltenham, Maryland

Why was vacuum chosen?

- Water savings
- Security

Solutions For Transportable Facilities

Transportable facilities

Design Flexibility

- Can run piping vertically
- Transportable via container/pod/module
- Can add fixtures easily

Timeline

Quick and easy to install

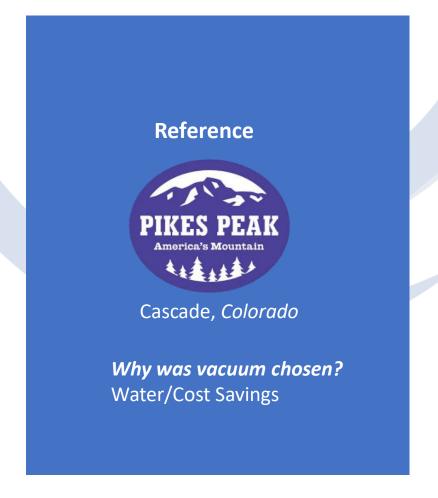
Reference

Concert Venue Europe

Why was vacuum chosen?

Quick and easy installation

Solutions For All Building Types



Up to 90% Water Savings

- Mountainous/Remote location =
 - no available ground water
 - Less water required on site
 - Cannot drain to conventional sewer system

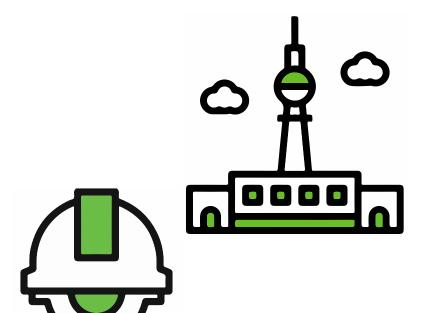
Cost Savings

- Large cost savings in trucking waste
 - Less frequent black water removal trips

Owner Requirements and Preferences

- Fixture Planning / Layout
- Operations / Usage
- Aesthetics
- Accelerated Schedule
- Sequencing
- Design Flexibility
- Coordination Between Customer & Tennant (Multi-Level Facilities)
- Health & Safety Hazards (Existing Sewer Lines, Construction Debris, Asbestos, Etc.)
- Expandability & Redundancy

Site Conditions and/or Obstacles For Gravity



- Embedded Contaminants (Asbestos)
- Unkown Location of Existing Utilities (Under or Embedded In Slab)
- Multi-Level Work (Especially Above Operational Tenant Spaces)
- Historic Buildings/Slab Penetration

- Bedrock
- Poor Soil Conditions
- Contaminated Soil
- High Water Table
- Methane (Land Fill)
- Impossible Inverts
- Building Categorization (Historical)

Architectural, Structural, and Engineering Considerations

- > LEED Certified
- Invert Obstacles
- Pipe Routing Obstacles
- Post Tension Slab
- Structural Slab
- Slab Composition
- Slab Thickness
- Grade Beams
- Steel Placement
- Zero-Penetration Barriers

- Environmental Barriers
- Complexity Of Structure
- Floor X-Rays
- Slab Penetrations
- Core Drills
- Saw Cuts / Trenching
- Multi-Level Facility
- Parking Garages
- Dual-Use
- Roof Penetrations

Cost Considerations, Payback, & Summary Conclusion

Entire System Comparison – Installed Cost Consideration and ROI

> Quantitative:

- Operational cost savings in water
- Cost savings in piping size (labor and material)
- Potential cost savings in space
- Ability to avoid costly structural, design, and construction obstacles
- Maintenance costs
- Initial investment in CAPEX

> Qualitative:

- Employee and patient health and wellness benefits related to bathroom hygiene for ALL high traffic buildings with public restrooms
- Costs saved on employee sick days and extended patient stays due to illness

Summary

- Vacuum plumbing provides many solutions that conventional gravity plumbing cannot:
 - Cleaner/Hygienic
 - 80-90% Water savings
 - Simplifies construction challenges while reducing costs over time
 - Freedom/flexibility in design and implementation
 - Eases remodelling
 - Reduces construction time
 - Flexibility for new construction & remodelling
 - Can preserve historical and architectural features
 - Can help a building achieve great water savings

Questions?

• Evac North America, Inc.

Mike Stach


• Tel: 630-639-9898

• Email: Michael.stach@evac.com

CEU Reminder

You must complete the quiz and post webinar survey to receive CEU credit for this webinar.

